Representation-based Just-in-time Specialization
and
the Psyco prototype for Python

Armin Rigo

Abstract. A powerful application of specialization is to remove interpretative
overhead: a language can be implemented with an interpreter, whose performance is
then improved by specializing it for a given program source. This approach is only
moderately successful with very dynamic languages, where the outcome of each single
step can be highly dependent on run-time data. We introduce in the present paper
two novel specialization techniques and discuss in particular their potential to close
the performance gap between dynamic and static languages:

Just-in-time specialization, or specialization by meed, introduces the “unlifting”
ability for a value to be promoted from run-time to compile-time during specialization
— the converse of the lift operator of partial evaluation. Its presence gives an unusual
and powerful perspective on the specialization process.

Representations are a generalization of the traditional specialization domains, i.e.
the compile-time/run-time dichotomy (also called static/dynamic, or “variables known
at specialization time” /“variables only known at run time”). They provide a theory
of data specialization.

These two techniques together shift some traditional problems and limitations of
specialization. We present the prototype Psyco for the Python language.

1 Introduction

Most programming languages can be implemented by interpretation, which is
a generally relatively simple and clear approach. The drawback is efficiency.
Some languages are designed to lead themselves naturally to more efficient ex-
ecution techniques (typically static compilation). Others require more involved
techniques. We present in the following a technique at the intersection of on-line
partial evaluation and just-in-time compilation.

Just-in-time compilation broadly refers to any kind of compilation (trans-
lation between languages, e.g. from Java bytecode to native machine code) that
occurs in parallel with the actual execution of the program.

Specialization refers to translation (typically from a language into itself)
of a general program into a more limited version of it, in the hope that the spe-
cialized version can be more efficient than the general one. Partial evaluation
is the specialization technique we will generally consider in the sequel: partial
information about the variables and arguments of a program is propagated by
abstractedly “evaluating”, or interpreting, the program.

In the present paper we investigate the extra operational power offered by
applying specialization at run time instead of compile time, a process which

could be called just-in-time specialization. It sidesteps a number of common
issues. For example, when specialization proceeds in parallel with the actual
execution, it is guaranteed to terminate, and even not to incur more than a
constant worse-case overhead. But the major benefit is that the specializer can
“poll” the execution at any time to ask for actual values, or for some amount
of information about actual values, which in effect narrows run-time values
down to compile-time constants. We will argue throughout the present paper
that this has deep implications: most notably, it makes specialization much less
dependent on complex heuristics or detailled source code annotations to guide
it.

1.1 Plan
e Section I: introduction.

e Section BJ: just-in-time specialization. By entierely mixing specialization
and execution, we obtain a technique that leads to the use of run-time
values at compile-time in an on-line specializer.

e Section B: representation theory. It is a flexible formalization generaliz-
ing the classical compile-time/run-time dichotomy, to match the needs of
section B.

e Section f: putting the pieces together.

e Appendix [Al: the Psyco prototype for Python.

Sections P and B can be read independently.

1.2 Background

The classical presentation of specialization is the following: consider a function
f(z,y) of two arguments. If, during the execution of a program, the value
of the first argument z is generally less variable than the value of y, then it
can be interesting to generate a family of functions fi, fa, f3... for a family
of commonly occurring values z1,x2,z3... such that f,(y) = f(a,,y). Each
function f,, can then be optimized independently.

The archetypical application is if interp(source,input) is an interpreter,
where source is the source code of the program to interpret and input the input
variables for the interpreted program. In this case, the function interp (input)
can be considered as the compiled version of the corresponding source code
sourcey. The interpretative overhead can indeed be statically compiled away if
source; is fixed.

Depending on context, this technique is commonly subdivided into on-line
and off-line specialization. If the set of values z1,x2,x3 ... is statically known,
the functions f1, fo, f3 ... can be created in advance by a source-to-source trans-
formation tool. This is off-line specialization. For example, in a program using

constant regular expressions to perform text searches, each static regular ex-
pression regexp, can be translated into an efficient matcher match,,(string) by
specializing the general matcher match(regexp, string).

If, on the other hand, the regular expressions are not known in advance,
e.g. because they are given to the program as a command-line argument, then
we can still use on-line specialization to translate and optimize the pattern at
the beginning of the execution of the program. (Common regular expression
engines that pre-compile patterns at run-time can be considered as a hand-
written version of the specialization of a generic regular expression interpreter.)

In on-line specialization, the time spent specializing is important because
the process occurs at run-time. In this respect on-line specialization is a form of
just-in-time compilation, particularly when it is hand-crafted to directly produce
lower-level code instead of code in the same high-level language as the source.

1.3 Compile-time and run-time values

The notation f(z,y) hides a major difficulty of both off-line and on-line special-
ization: the choice of how exactly to divide the arguments into the compile-time
(z) and the run-time (y) ones. The same problem occurs for the local variables
and the function calls found in the definition of f.

In some approaches the programmer is required to annotate the source code
of f. This is a typical approach if f is a not-excessively-large, well-known func-
tion like an interpreter interp for a specific language. The annotations are
used by the specializer to constant-propagate the interpretation-related compu-
tations at compile-time (i.e. during the translation of interp into a specialized
interpy), and leave only the "real” computations of the interpreted program for
the run-time (i.e. during the execution of interp).

In other approaches, many efforts are spent trying to automatically derive
this categorization compile-time/run-time from an analysis of the source code
of interp.

However, consider a function call that might be identifiable as such in the
source, but where the function that is being called could be an arbitrary object
whose constantnessf] cannot be guaranteed. The call can thus not be specialized
into a direct call. Some overhead remains at run-time, and the indirect call pre-
vents further cross-function optimizations. Even more importantly, if the basic
operations are fully polymorphic, even a simple addition cannot be specialized
into a processor integer addition: the actual operation depends on the dynamic
run-time classes of the variables. Actually, even the classes themselves might
have been previously tampered with.

For the above examples, one could derive by hand a more-or-less reason-
able categorization, e.g. by deciding that the class of all the objects must be
compile-time, whereas the rest of the objects’ value is run-time. But one can
easily construct counter-examples in which this (or any other) categorization is
suboptimal. Indeed, in specialization, an efficient result is a delicate balance

n object-oriented languages, even its class could be unknown.

between under-specialization (e.g. failure to specialize a call into a direct call if
we only know at compile-time that the called object is of class “function”) and
over-specialization (e.g. creating numerous versions of a function which are only
slightly or even not better at all than the more general version).

1.4 Contribution of the present paper

In our approach, specialization is entierely performed at run-time; in particular
the categorization compile-time/run-time itself is only done during the execu-
tion. Starting from this postulate, our contributions are:

e The specialization process is not done at the function level, but at a much
finer-grained level ;| which allows it to be deeply intermixed with actual
execution.

e Specialization can query for actual run-time values, a process which is
effectively the converse of the lift operator (section B.1I).

e Specialization is not only based on types, i.e. subdomains of the value do-
mains, but on which representations are choosen to map the domains. For
example, we can specialize some code for particular input values, or only
for particular input types; in the latter case, the way run-time information
represents a value within the allowed domain can itself vary (section J).

The most important point is that using the just-in-time nature of the ap-
proach, i.e. the intermixed specialization and execution processes, we can per-
form specialization that uses feed-back from run-time values in a stronger way
than usual: values can be promoted from run-time to compile-time. In other
words, we can just use actual run-time values directly while performing special-
ization. This kind of feed-back is much more fine-grained than e.g. statistics
collected at run-time used for recompilation.

1.5 Related work

The classical reference for efficient execution of dynamic programming languages
is the implementation of Self [CY2], which transparently specializes functions for
specific argument types using statistical feed-back. A number of projects have
followed with a similar approach, e.g. [D95] and [V94].

Trying to apply the techniques on increasingly reflective languages in which
the user can tamper with ingreasingly essential features (e.g. via a meta-object
protocol, or MOP [KYI]) eventually led to entierely run-time specialization;
Sullivan introduces in [SOI] the theory of dynamic partial evaluation, which is
specialization performed as a side effect of regular evaluation. To our knowledge
this is the closest work to ours because the specializer does not only know what
set of values a given variable can take, but also which specific value it takes

2Tt is not the level of basic blocks; the boundaries are determined dynamically according
to the needs of the specializer.

right now. (Sullivan does not seem to address run-time choice points in [SO1],
i.e. how the multiple paths of a residual conditional expressions are handled.)

Intermediate approaches for removing the interpretative overhead in specific
reflective object-oriented languages can be found in [MY8] and [BO0]; however,
both assume a limited MOP model.

Java has recently given just-in-time compilation much public exposure; Ay-
cock [AT3] gives a history and references. Some projects (e.g. J3 [Pii] for Squeak
[[97]) aim at replacing an interpreter with a compiler within an environment
that provides the otherwise unmodified supporting library. Throughout history,
a number of projects (see [A03]) offered the ability to complementarily use both
the interpreter and the compiler, thought considerable care was required to keep
the interpreted and compiled evaluations synchronized (as was attempted by J2,
the precursor of J3; [Pii] describes the related hassle).

Whaley [WOT] discusses compilation with a finer granularity than whole
functions.

Low-level code generation techniques include lazy compilation of uncommon
branches ([CY92], p. 123) and optimistic optimization using likely invariants, with
guards in the generated code ([P8R]).

2 Just-in-time specialization

This section introduces the basic idea behind just-in-time specialization from
a practical point of view. The following section § will give the formal theory
supporting it.

2.1 The Unlift operator

Assume that the variables in a program have been classified into compile-time
and run-time variables. During specialization, it is only possible to make use of
the compile-timef] part of the values. Their run-time part is only available later,
during execution. This is traditional in specialization: the amount of informa-
tion available for the specializer is fixed in advance, even if what this information
might actually be is not, in the case of on-line specialization. As an extreme
example, [C02] describes a multi-stage compilation scheme in which gradually
more information (and less computational time) is available for optimization
while the system progresses towards the later stages.

The restriction on what information is expected to be present at all at a
given stage places a strong global condition on the compile-time/run-time clas-
sification of a program. There are cases where it would be interesting to gather
compile-time (i.e. early) information about a run-time value. This operation
is essential; in some respect, it is what on-line specializers implicitely do when

3 “Compile-time” could be more specifically called “specialization-time” when doing spe-
cialization, but the border between compiling and specializing is fuzzy.

they start their job: they take an input (run-time) value, and start generating
a version of the source specialized for this (now considered compile-time) value.

Let us make this operation explicit. We call it unlift, as it is effectively the
converse of the lift operator which in partial evaluation denotes that a compile-
time value should be “forgotten” (i.e. considered as run-time) in the interest of
a greater generality of the residual code. Althought the possibility of unlift is
not often considered, it does not raise numerous problems. By comparison, the
common problems found in most forms of on-line specialization (see section 2.4
are much more difficult.

The technique to read a run-time value from the specializer is best explained
with explicit continuations: when a run-time value is asked for, the specializer is
suspended (we capture its state in a continuation); and residual code is emitted
that will resume the specializer (by invoking the continuation) with the run-
time value. In other words, specialization is not simply guided by run-time
feed-back; it is literally controlled by the run-time, and does not take place at
all (the continuation remains suspended) before these run-time values actually
show up.

2.2 The top-down approach

Unlifting makes specialization and execution much more intermixed in time than
even on-line specialization, as we will see on an example in section E-3. We call
this particular technique just-in-time specialization. Interestingly, unlifting
seems to lessen the need for termination analysis or widening heuristics.

The reason behind the latter claim is that instead of starting with highly
specialized versions of the code and generalizing when new values are found that
do not fit in the previous constrains (as we would have to do for fear of never
terminating), we can start with the most general inputs and gradually specialize
by applying the unlift operator. Perhaps even more important: we can unlift
only when there is a need, i.e. an immediately obvious benefit in doing so. In
other words, we can do need-based specialization.

A “need to specialize” is generally easy to define: try to avoid the pres-
ence in the residual code of some constructs like indirect function calls or large
switches, because they prevent further optimizations by introducing run-time
choice points. Specializing away this kind of language construct is a natural
target. This can be done simply by unlifting the value on which the dispatch
takes place.

2.3 Example

Consider the following function:

def f(n):
return 2*(n+1)

As discussed in section 2.4 we will enter the specializer with the most general
case: nothing is known about the input argument n. Figure [] shows how

specialization and execution are intermixed in time in this top-down approach.
Note that specialization only starts when the first actual (run-time) call to f
takes place.

execution specialization
program call f(12)

— start — start compiling f(n) with
nothing known about n

for n + 1 it would be better
to know the type of n.
start executing f(n) as — run — What is the type of n?

compiled so far with n = 12

read the type of n: int
the value asked for: —int — proceed with the addition of
two integer values: read the
value into a register, write
code that adds 1.

execute the addition machine « run — Did it overflow?
instruction, result 13. ‘
the answer asked for: —no — we know that (n + 1) and 2

are integers so we write
code that multiply them.

execute the multiplication — run — Did it overflow?
instruction, result 26. ‘
the answer asked for: —no — result is an integer,
‘ return it.
return 26. — run —

Figure 1: Mixed specialization and execution

Subsequent invocations of f with another integer argument n will reuse the
already-compiled code, i.e. the left column of the table. Reading the left column
only, you will see that it is nothing less than the optimal run-time code for doing
the job of the function f, i.e. it is how the function would have been manually
written, at least for the signature “accepts an arbitrary value and returns an
arbitrary value”.

In fact, each excursion through the right column is compiled into a single
conditional jump in the left column. For example, an “overflow?” question
corresponds to a “jump-if-not-overflow” instruction whose target is the next
line in the left column. As long as the question receives the same answer, it is
a single machine jump that no longer goes through the specializer.

If, however, a different answer is later encountered (e.g. when executing
£(2147483647) which overflows on 32-bit machines), then it is passed back to the

specializer again, which resumes its job at that point. This results in a different
code path, which does not replace the previously-generated code but completes
it. When invoked, the specializer patches the conditional jump instruction to
include the new case as well. In the above example, the “jump-if-overflow”
instruction will be patched: the non-overflowing case is (as before) the first
version of the code, but the overflowing case now points to the new code.

As another example, say that f is later called with a floating-point value.
Then new code will be compiled, that will fork away from the existing code at
the first question, “what is the type of n?”. After this additional compilation,
the patched processor instruction at that point is a three-way jumpfl: when
the answer is int it jumps to the first version; when it is float to the second
version; and otherwise it calls back again to the specializer.

2.4 Issues with just-in-time specialization

Just-in-time specialization, just like on-line specialization, requires caching tech-
niques to manage the set of specialized versions of the code, typically mapping
compile-time values to generated machine code. This cache potentially requires
sophisticated heuristics to keep memory usage under control, and to avoid over-
specialization.

This cache is not only used on function entry points, but also at the head of
loops in the function bodies, so that we can detect when specialization is loop-
ing back to an already-generated case. The bottom-up approach of traditional
on-line specialization requires widening (when too many different compile-time
values have been found at the same source point, they are tentatively general-
ized) to avoid generating infinitely many versions of a loop or a function. The
top-down specialization-by-need approach of just-in-time specialization might
remove the need for widenening, although more experimentation is needed to
settle the question (the Psyco prototype does some widening which we have
not tried to remove so far).

Perhaps the most important problems introduced by the top-down approach
are:

1. memory usage, not for the generated code, but because a large number of
continuations are kept around for a long time — even forever, a priori. In
the above example, we can never be sure that f will not be called later
with an argument of yet another type.

2. low-level performance: the generated code blocks are extremely fine-grained.
As seen above, only a few machine instructions can typically be generated
before the specializer must give the control back to execution, and of-
ten this immediately executes the instructions just produced. This defies
common compiler optimization techniques like register allocation. Care
must also be taken to keep some code locality: processors are not good

4which probably requires more than one processor instruction, and which grows while new
cases are encountered. This kind of machine code patching is quite interesting in practice.

at running code spread over numerous small blocks linked together with
far-reaching jumps.

A possible solution to these low-level problems would be to consider the code
generated by the specializer as an intermediate version on the efficiency scale.
It may even be a low-level pseudo-code instead of real machine code, which
makes memory management easier. It would then be completed with a better
compiler that is able to re-read it later and optimize it more seriously based on
real usage statistics. Such a two-phase compilation has been successfully used
in a number of projects (described in [A03]).

The Psyco prototype currently implements a subset of these possible tech-
niques, as described in section A3

3 Representation-based specialization

This section introduces a formalism to support the process intuitively described
above; more specifically, how we can represent partial information about a value,
e.g. as in the case of the input argument n of the function f(n) in -3, which is
promoted from run-time to “known-to-be-of-type-int”.

3.1 Representations

We call type a set of values; the type of a variable is the set of its allowed values.

Definition 1 Let X be a type. A (type) representation of X is a function
r: X' — X. The set X' = dom(r) is called the domain of the representation.

The name representation comes from the fact that r allows the values in X,
or at least some of them (the ones that are in the image of r), to be “repre-
sented” by an element of X’'. An 2’ € X’ represents the value r(z’) € X. As
an example, the domain X’ could be a subtype of X, r being just the inclusion.
Here is a different example: say X is the set of all first-class objects of a pro-
gramming language, and X’ is the set of machine-sized words. Then r could
map a machine word to the corresponding integer object in the programming
language, a representation which is often not trivial (because the interpreter or
the compiler might associate meta-data to integer objects).

The two extreme examples of representations are

1. the universal representation idx : X — X that represents any object as
itself;

2. for any x € X, the constant representation ¢, : {-} — X, whose domain is
a set with just one (arbitrary) element “ - 7, whose image ¢, () is precisely
x.

Definition 2 Let f : X — Y be a function. A (function) representationf] of
f is a function f': X' — Y’ together with two type representationsr: X' — X
and s :Y' —Y such that s(f'(z')) = f(r(z)) for any 2’ € X':

1o

X7 > Y7

r 15 called the argument representation and s the result representation.
A partial representation is a partial function f' with r and s as above,
where the commutativity relation holds only where [’ is defined.

If r is the inclusion of a subtype X’ into X, and if s = idy, then f’ is
a specialization of f: indeed, it is a function that gives exactly the same
results as f, but which is restricted to the subtype X’. Computationally, f’
can be more efficient than f — it it the whole purpose of specialization. More
generally, a representation f’ of f can be more efficient than f not only because
it is specialized to some input arguments, but also because both its input and
its output can be represented more efficiently.

For example, if f : N — N is a mathematical function, it could be par-
tially represented by a partial function f/ : M — M implemented in assembly
language, where M is the set of machine-sized words and r,s : M — N both
represent small integers using (say, unsigned) machine words. This example also
shows how representation can naturally express relationships between levels of
abstractions: r is not an inclusion of a subtype into a type; the type M is much
lower-level than a type like N which can be expected in high-level programming
languages.

3.2 Specializers

Definition 3 Let f : X — Y be a function and R a family of representations
of X. We call R-specializer a map Sy that can extend all v € R into repre-
sentations of f with argument r:

X_f>y

T Sy(r) T

X —Y

Note that if R contains the universal representation idx, then Sy can also
produce the (unspecialized) function f itself: s(S;(idx)(z)) = f(z) ie. f =
so S¢(idx), where s is the appropriate result representation of Y.

5We use the word “representation” for both types and functions: a function representation
is exactly a type representation in the arrow category.

10

The function &’ — S (r)(2") generalizes the compile-time/run-time division
of the list of arguments of a function. Intuitively, r encodes in itself information
about the “compile-time” part in the arguments of f, whereas x’ provides the
“run-time” portion. In theory, we can compute r(2’) by expanding the run-time
part 2’ with the information contained in r; this produces the complete value
x € X. Then the result f(x) is represented as s(S¢(r)(z’)).

For example, consider the particular case of a function g(w,z’) of two argu-
ments. For convenience, rewrite it as a function g((w,z’)) of a single argument
which is itself a couple (w,z’). Call X the type of all such couples. To make
a specific value of w compile-time but keep =’ at run-time, pick the following
representation of X:

ry: X — X=WxX'
¥ — (w2

and indeed:
Wx X —Lsvy

T Sg(rw) l

X7
Sg(rw)(@") = g(ruw(z’)) = g((w, ")), so that Sq(ry) is the specialized func-

T
tion g((w,—)).l With the usual notation f; x fo for the function (ay,as)
(fi(a1), f2(az)), a compact way to define r,, is r, = ¢, X idx]

3.3 Example

Consider a compiler able to do constant propagation for a statically typed lan-
guage like C. For simplicity we will only consider variables of type int, taking
values in the set Int.

void f(int x) {
int y = 2;
int z =y + 5;
return x + z;

3

The job of the compiler is to choose a representation for each variable. In
the above example, say that the input argument will be passed in the machine
register A; then the argument z is given the representation

r4 : Machine States — Int

state +—— register A in state

SIf R contains at least all the r, representations, for all w, then we can also reconstruct
the three Futamura projections, though we will not use them in the sequel.
TWe will systematically identify {-} x X with X.

11

The variable y, on the other hand, is given the constant representation cs.
The compiler could work then by “interpreting” symbolically the C code with
representations. The first addition above adds the representations cp and cs,
whose result is the representation c;. The second addition is between c; and
r 4; to do this, the compiler emits machine code that will compute the sum of A
and 7 and store it in (say) the register B; this results in the representation rpg.

Note how neither the representation alone, nor the machine state alone, is
enough to know the value of a variable in the source program. This is because
this source-level value is given by r(z’), where r is the (compile-time) represen-
tation and ' is the (run-time) value in dom(r) (in the case of r4 and rp, 2’ is a
machine state; in the case of ¢y and ¢5 it is nothing, i.e. “” — all the information
is stored in the representation in these extreme cases).

This is an example of off-line specialization of the body of a function f. If
we repeated the process with, say, ci1g as the input argument’s representation,
then it would produce a specialized (no-op) function and return the ¢;7 repre-
sentation. At run-time, that function does nothing and returns nothing, but it
is a nothing that represents the value 17, as specified by cy7.

An alternative point of view on the symbolic interpretation described above
is that we are specializing a C interpreter interp(source, input) with an argu-
ment representation cy x r4. This representation means “source is known to
be exactly f, but input is only known to be in the run-time register A”.

3.4 Application

For specializers, the practical trade-off lies in the choice of the family R of repre-
sentations. It must be large enough to include interesting cases for the program
considered, but small enough to allow Sy (r) to be computed and optimized with
ease. But there is no reason to limit it to the examples seen above instead of
introducing some more flexibility.

Consider a small language with constructors for integers, floats, tuples, and
strings. The variables are untyped and can hold a value of any of these four
(disjoint) types. The “type” of these variables is thus the set X of all values of
all four types.fj

def f(x, y):
u=x+y
return (x, 3 * u)

Addition and multiplication are polymorphic (tuple and string addition is
concatenation, and 3 x u = u + u + u).

We will try to compile this example to low-level C code. The set R of
representations will closely follow the data types. It is built recursively and
contains:

e the constant representations ¢, for any value x;

8The syntax we use is that of the Python language, but it should be immediately obvious.

12

e the integer representations r;,,7;,,... where i1,i2,... are C variables of
type int (where r; means that the value is an integer found in the C
variable called in);

o the float representations 7y, ,7¢,,... where £1,£2,... are C variables of
type float;

e the string representations rg,,7s,,... where s1,s2,... are C variables of
type charx;

e the tuple representations ry X ... X r,, for any (previously built) represen-
tations rq,...,7y,.

The tuple representations allow information about the items to be preserved
across tupling/untupling; it represents each element of the tuple independently.

Assuming a sane definition of addition and multiplication between represen-
tations, we can proceed as in section B-3. For example, if the above f is called
with the representation rs, x rg, it will generate C code to concatenate and
repeat the strings as specified, and return the result in two C variables, say s1
and s4. This C code is a representation of the function f; its resulting repre-
sentation is r,, X 7,,. If f had been called with 7;, X 7, instead it would have
generated a very different C code, resulting in a representation like r;, X 7.

The process we roughly described defines an R-specializer Sy: if we ignore
type errors for the time being, then for any representation » € R we can produce
an efficient representation S¢(r) of f. Also, consider a built-in operation like
+. We have to choose for each argument representation a result representa-
tion and residual C code. This choice is itself naturally described as a built-in
R-specializer S;: when the addition is called with an argument in a specific
representation (e.g. r;, X r;,), then the operation can be represented as specified
by Si (e.g. Sy(ri X riy) would be the low-level code i3 = i1+i2;) and the
result is in a new, specific representation (e.g. 7).

In other words, the compiler can be described as a symbolic interpreter over
the abstract domain R, with rules given by the specializers. It starts with
predefined specializers like Sy and then, recursively, generates the user-defined
ones like Sy.

3.5 Integration with an interpreter

The representations introduced in section B4 are not sufficient to be able to
compile arbitrary source code (even ignoring type errors). For example, a mul-
tiplication n*t between an unknown integer (e.g. r;,) and a tuple returns a tuple
of unknown length, which cannot be represented within the given R.

One way to ensure that all values can be represented (without adding ever
more cases in the definition of R) is to include the universal representation idx
among the family R. This slight change suddenly makes the compiler tightly
integrated with a regular interpreter. Indeed, this most general representation
stands for an arbitrary value whose type is not known at compile-time. This

13

representation is very pervasive: typically, operations involving it produce a
result that is also represented by idx.

A function “compiled” with all its variables represented as idx is inefficient:
it still contains the overhead of decoding the operand types for all the operations
and dispatching to the correct implementation. In other words it is very close
to an interpreted version of f. Let us assume that a regular interpreter is
already available for the language. Then the introduction of idx provides a
safe “fall-back” behavior: the compiler cannot fail; at worst it falls back to
interpreter-style dispatching. This is an essential property if we consider a much
larger programming language than described above: some interpreters are even
dynamically extensible, so that no predefined representation set R can cover all
possible cases unless it contains idx.

A different but related problem is that in practice, a number of functions
(both built-in and user-defined) have an efficient representation for “common
cases” but require a significantly more complex representation to cover all cases.
For example, integer addition is often representable by the processor’s addition
of machine words, but this representation is partial in case of overflow.

In the spirit of section .3 we solve this problem by forking the code into
a common case and an exceptional one (e.g. by default we select the (partial)
representation “addition of machine-words” for S, (r;, X 7,); if an overflow is
detected we fork the exceptional branch using a more general representation
Si(r) = + : Nx N — N. Generalization cannot fail: in the worst case we
can use the fall-back representation Sy (idx X idy). (This is similar to recent
successful attempts at using a regular interpreter as a fall-back for exceptional
cases, e.g. [WiT].)

4 Putting the pieces together

Sections P and B are really the two sides of the same coin: any kind of behavior
using idx as a fall-back (as in Bf) raises the problem of the pervasiveness of
idx in the subsequent computations. This was the major motivation behind
section P: just-in-time specialization enables “unlifting”.

Recall that to lift is to move a value from compile-time to run-time; in term
of representation, it means that we change from a specific representation (e.g.
¢42) to a more general one (e.g. 7;,, the change being done by the C code i1 =
42;). Then unlifting is a technique to solve the pervasiveness problem by doing
the converse, i.e. switching from a general representation like idx to a more
specific one like r;,. We leave as an exercice to the reader the reformulation of
the example of section .3 in terms of representations.

14

4.1 Changes of representation

Both lifting and unlifting are instances of the more general change of represen-
tation kind of operation. In the terminology of section B, a change of repre-
sentation is a representation of an identity, i.e. some low-level code that has no
high-level effect:

X _d X X
TIT Trz or equivalently 1/ \ :
X, —L> X, X1 == X

A lift is a function g that is an inclusion X; C Xs, i.e. the domain of
the representation r; is widened to make the domain of r5. Conversely, an
unlift is a function g that is a restriction: using run-time feedback about the
actual x1 € X, the specializer restricts the domain X; to a smaller domain Xs.
Unlifts are partial representations of the identity. As in B-, run-time values
may later show up that a given partial representation cannot handle, requiring
re-specialization.

4.2 Conclusion

In conclusion, we presented a novel “just-in-time specialization” technique. It
differs from on-line specialization as follows:

e The top-down approach (B-3) introduces specialization-by-need as a promiz-
ing alternative to the widening heuristics based on the unlift operator.

e It introduces some low-level efficiency issues (B4, [A-J) not present in on-
line specialization.

e It prompts for a more involved “representation-based” theory of value
management (B-1]), which is in turn more powerful (B.4) and gives a natural
way to map data between abstraction levels.

e Our approach makes specialization more tightly coupled with regular in-
terpreters (B.).

The prototype is described in appendix [l

4.3 Acknowledgements

All my gratitude goes to the Python community as a whole for a great lan-
guage that never sacrifices design to performance, forcing interesting optimiza-
tion techniques to be developped.

15

A Psyco

In the terminology introduced above, Psycof] is a just-in-time representation-
based specializer operating on the Python[language.

A.1 Overview

The goal of Psyco is to transparently accelerate the execution of user Python
code. It is not an independent tool; it is an extension module, written in C, for
the standard Python interpreter.

Its basic operating technique was described in section .3. It generates ma-
chine code by writing the corresponding bytes directly into executable memory
(it cannot save machine code to disk; there is no linker to read it back). Its
architecture is given in figure g.

Python C API
call and various support code | ..u

call

- - - - = = 1
| Machine code —22"* . Run-time call Specializer
| written by Psyco D — dispatcher p
L - - - _ _ - _J o7
~ -
~ ~

Figure 2: The architecture of Psyco

Psyco consists of three main parts (second row), only the latter two of which
(in solid frames) are hard-coded in C. The former part, the machine code, is
dynamically generated.

e The Python C API is provided by the unmodified standard Python in-
terpreter. It performs normal interpretation for the functions that Psyco
doesn’t want to specialize. It is also continously used as a data manipula-
tion library. Psyco is not concerned about loading the user Python source
and compiling it into bytecode (Python’s pseudo-code); this is all done by
the standard Python interpreter.

e The specializer is a symbolic Python interpreter: it works by interpreting
Python bytecodes with representations instead of real values (see section

9http://psyco.sourceforge.net
Ohttp://www.python.org

16

http://psyco.sourceforge.net
http://www.python.org

B-4). This interpreter is not complete: it only knows about a subset of the
built-in types, for example. But it does not matter: for any missing piece,
it falls back to universal representations (section B.3).

e The machine code implements the execution of the Python bytecode. Af-
ter some time, when the specializer is no longer invoked because all needed
code has been generated, then the machine code is an almost-complete,
efficient low-level translation of the Python source. (It is the left column
in the example of P.3.)

e The run-time dispatcher is a piece of supporting code that interfaces the
machine code and the specializer. Its job is to manage the caches contain-
ing machine code and the continuations that can resume the specializer
when needed.

Finally, a piece of code not shown on the above diagram provides a set of
hooks for the Python profiler and tracer. These hooks allow Psyco to instru-
ment the interpreter and trigger the specialization of the most computationally
intensive functions.

A.2 Representations

The representations in Psyco are implemented using a recursive data structure
called vinfo_t. These representations closely follow the C implementation of
the standard Python interpreter. Theoretically, they are representations of the
C types manipulated by the interpreter (as in section B-J). However, we use
them mostly to represent the data structure PyObject that implements Python
language-level objects.

There are three kinds of representation:

1. compile-time, representing a constant value or pointer;

2. run-time, representing a value or pointer stored in a specific processor
register;

3. virtual-time, a generic name[] for a family of custom representations of
PyObject.

Representations of pointers can optionally specify the sub-representations of
the elements of the structure they point to. This is used mostly for PyObject. A
run-time pointer A to a PyObject can specify additional information about the
PyObject it points to, e.g. that the Python type of the PyObject is PyInt_Type,
and maybe that the integer value stored in the PyObject has been loaded in
another processor register B. In this example, the representation of the pointer
to the PyObject is

ralCint, 7B]

where:

11 The name comes from the fact that the represented pointer points to a “virtual” PyObject
structure.

17

® ;n: is the representation of the constant value “pointer to PyInt_Type”;

e 74 and rp are the run-time representations for a value stored, respectively,
in the registers A and B;

e the square brackets denote the sub-representations.

Sub-representations are also used for the custom (virtual-time) representa-
tions. For example, the result of the Python addition of two integer objects is a
new integer object. We must represent the result as a new PyIntObject struc-
ture (an extension of the PyObject structure), but as long as we do not need
the exact value of the pointer to the structure in memory, there is no need to
actually allocate the structure. We use a custom representation v;,; for integer
objects: for example, the (Python) integer object whose numerical value is in
the register B can be represented as v;,:[rp]. This is a custom representation
for “a pointer to some PyIntObject structure storing an integer object with
value rg”.

A more involved example of custom representation is for string objects sub-
ject to concatenation. The following Python code:

s =7’ # empty string
for x in somelist:
s =s+ f(x) # string concatenation

has a bad behavior, quadratic in the size of the string s, because each concate-
nation copies all the characters of s into a new, slightly longer string. For this
case, Psyco uses a custom representation, which could beE Veoneat|StT1, str2],
where strl and str2 are the representations of the two concatenated strings.

Python fans will also appreciate the representation v,qnge[start, stop] which
represents the list of all number from start to stop, as so often created with the
range () function:

for i in range(100, 200):

Whereas the standard interpreter must actually create a list object contain-
ing all the integers, Psyco does not, as long as the v,qnge representation is used
as input to constructs that know about it (like, obviously, the for loop).

A.3 Implementation notes

Particular attention has been paid to the continuations underlying the whole
specializing process. Obviously, being implemented in C, we do not have general-
purpose continuations in the language. However, in Psyco it would very prob-
ably prove totally impractical to use the powerful general tools like Lisp or

12For reasons not discussed here, the representation used in practice is different: it is a
pointer to a buffer that is temporarily over-allocated, to make room for some of the next strings
that may be appended. A suitable over-allocation strategy makes the algorithm amortized
linear.

18

Scheme continuations. The reason is the memory impact, as seen in section Z-4.
It would not be possible to save the state of the specializer at all the points
where it could potentially be resumed from.

Psyco emulates continuations by saving the state only at some specific posi-
tions, which are always between the specialization of two opcodes (pseudo-code
instructions) — and not between any two opcodes, but only between carefully
selected ones. The state thus saved is moreover packed in memory in a very
compact form. When the specializer must be resumed from another point (i.e.
from some precise point in the C source, with some precise local variables, data
structures and call stack) then the most recent saved state before that point
is unpacked, and execution is replayed until the point is reached again. This
recreates almost exactly the same C-level state as the last time we reached the
point.

Code generation is also based on custom algorithms, not only for perfor-
mance reason, but because general compilation techniques cannot be applied
to code that is being executed piece by piece almost as soon as it is created.
Actually, the prototype allocates registers in a round-robin fashion and tries to
minimize memory loads and stores, but performs few other optimizations. It
also tries to keep the code blocks close in memory, to improve the processor
cache hits.

Besides the Intel i386-compatible machine code, Psyco has recently be “ported”
to a custom low-level virtual machine architecture. This architecture will
be described in a separate paper. It could be used as an intermediate code
for two-stage code generation, in which a separate second stage compiler would
be invoked later to generate and agressively optimize native code for the most
heavily used code blocks.

The profiler hooks in Psyco select the functions to specialize based on
an “exponential decay” weighting algorithm, also used e.g. in Self [HY6]. An
interesting feature is that, because the specializer is very close in structure to the
original interpreter (being a symbolic interpreter for the same language), it was
easy to allow the profiler hooks to initiate the specialization of a function while it
s running, in the middle of its execution — e.g. after some number of iterations
in a long-running loop, to accelerate the remaining iterations. This is done
essentially by building the universal representation of the current (interrupted)
interpreter position (i.e. the representation in which nothing specific is known
about the objects), and starting the specializer from there.

In its current incarnation, Psyco uses a mixture of widening, lifting and
unlifting that may be overcomplicated. To avoid infinite loops in the form
of a representation being unlifted and then widened again, the compile-time
representations are marked as fired when they are unlifted. The diagram of
figure B lists all the state transitions that may occur in a vinfo_t.

19

virtual-time

fixed

compile-time

non-fixed
compile-time

Figure 3: State transitions in Psyco: widening (3), unlifting (5) and other
representation changes (1, 2, 4)

A.4 Performance results

As expected, Psyco gives massive performance improvements in specific situa-
tions. Larger applications where time is not spent in any obvious place benefit
much less from the current, extremely low-level incarnation of this prototype.
In general, on small benchmarks, Python programs run with Psyco exhibit a
performance that is near the middle of the (large) gap between interpreters and
static compilers. This result is already remarkable, given that few efforts have
been spent on optimizing the generated machine code.

Here are the programs we have timed:

int arithmetic: An arbitrary integer function, using addition and sub-
traction in nested loops. This serves as a test of the quality of the machine
code.

float arithmetic: Mandelbrot set computation, without using Python’s
built-in complex numbers. This also shows the gain of removing the object
allocation and deconstruction overhead, without accelerating the compu-
tation itself: Psyco does not know how to generate machine code handling
floating points so has to generate function calls.

complex arithmetic: Mandelbrot set computation. This shows the raw
gain of removing the interpretative overhead only: Psyco does not know
about complex numbers.

files and lists: Counts the frequency of each character in a set of files.

Pystone: A classical benchmark for Python,[though not representative
at all of the Python programming style.

ZPT: Zope Page Template, an HTML templating language interpreted
in Python. Zope is a major Python-based web publishing system. The
benchmark builds a string containing an HTML page by processing custom
mark-ups in the string containing the source page.

PyPy 1: The test suite of PyPy, a Python interpreter written in Python,
first part (interpreter and module tests).

13 Available in Lib/test/pystone.py in the Python distribution.

20

e PyPy 2: Second part (object library implementation).

The results (figure f]) have been obtained on a Pentium III laptop at T00MHz
with 64MB RAM. Times are seconds per run. Numbers in parenthesis are the
acceleration factor with respect to Python times. All tests are run in maximum
compilation mode (psyco.full()), i.e. without using the profiler but blindly
compiling as much code as possible, which tends to give better results on small
examples.

Benchmark Python (2.3.3) Psyco C (gce 2.95.2)
int arithmetic 285 0.262 (109x) _ 0.102 (281x)
ovf 0.393 (73x)
float arithmetic 28.2 2.85 (9.9%) 0.181 (156x)
complex arithmetic 19.1 7.24 (2.64%) 0.186 (102x)
sqrt:[7 0.480 (40x)
files and lists 20.1 1.45 (13.9%) 0.095 (211x)
Pystone 19.3 3.94 (4.9x%)
ZPT 123 61 (2x)
PyPy 1 5.27 3.54 (1.49x)
PyPy 2 60.7 59.9 (1.01x)

Figure 4: Timing the performance improvement of Psyco

These results are not representative in general because we have, obviously,
selected examples where good results were expected. They show the behavior of
Psyco on specific, algorithmic tasks. Psyco does not handle large, unalgorithmic
applications very well. It is also difficult to get meaningful comparisons for this
kind of application, because the same application is generally not available both
in Python and in a statically compiled language like C.

The present prototype moreover requires some tweaking to give good results
on non-trivial examples, as described in section 2.2 of [R03].

More benchmarks comparing the Psyco-accelerated Python with other lan-
guages have been collected and published on the web
(e.g. http://osnews.com/story.php’news_id=5602).

14 Although no operation in this test overflows the 32-bit words, both Python and Psyco
systematically check for it. The second version of the equivalent C program also does these
checks (encoded in the C source). Psyco is faster because it can use the native processor
overflow checks.

15This second version extracts the square root to check if the norm of a complex number is
greater than 2, which is what Python and Psyco do, but we also included the C version with
the obvious optimization because most of the time is spent there.

21

http://osnews.com/story.php?news_id=5602

References

[A03]

[BOO]

[C92]

[C02]

[D95)]

[H96]

[197]

[K91]

[MO8]

[Piu]

[P8S]

John Aycock. A Brief History of Just-In-Time. ACM Computing Sur-
veys, Vol. 35, No. 2, June 2003, pp. 97-113.

Mathias Braux and Jacques Noyé. Towards partially evaluating reflection
in Java. In Proceedings of the 2000 ACM SIGPLAN Workshop on Eval-
uation and Semantics-Based Program Manipulation (PEPM-00), pages
2-11, N.Y., January 22-23 2000. ACM Press.

Craig Chambers. The Design and Implementation of the Self Compiler,
an Optimizing Compiler for Object-Oriented Programming Languages.
PhD thesis, Computer Science Departement, Stanford University, March
1992.

Craig Chambers. Staged Compilation. In Proceedings of the 2002 ACM
SIGPLAN workshop on Partial evaluation and semantics-based program
manipulation, pages 1-8. ACM Press, 2002.

Jeffrey Dean, Craig Chambers, and David Grove. Selective specializa-
tion for object-oriented languages. In Proceedings of the ACM SIGPLAN
95 Conference on Programming Language Design and Implementation
(PLDI), pages 93-102, La Jolla, California, 18-21 June 1995. SIGPLAN
Notices 30(6), June 1995.

Urs Holzle and David Ungar. Reconciling responsiveness with perfor-
mance in pure object-oriented languages. ACM Transactions on Program-
ming Languages and Systems, 18(4):355—400, July 1996.

Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay.
Back to the future: The story of Squeak, A practical Smalltalk written
in itself. In Proceedings OOPSLA ’97, pages 318-326, November 1997.

G. Kiczales, J. des Rivieres, and D. G. Bobrow. The Art of the Meta-
Object Protocol. MIT Press, Cambridge (MA), USA, 1991.

Hidehiko Masuhara, Satoshi Matsuoka, Kenichi Asai, and Akinori
Yonezawa. Compiling away the meta-level in object-oriented concurrent
reflective languages using partial evaluation. In OOPSLA 95 Confer-
ence Proceedings: Object-Oriented Programming Systems, Languages,
and Applications, pages 300-315. ACM Press, 1995.

Ian Piumarta. J38 for Squeak.
http://www-sor.inria.fr/ piumarta/squeak/unix/zip/j3-2.6.0/doc/j3/

Calton Pu, Henry Massalin, and John Ioannidis. The synthesis kernel.
In USENIX Association, editor, Computing Systems, Winter, 1988., vol-
ume 1, pages 11-32, Berkeley, CA, USA, Winter 1988. USENIX.

22

http://www-sor.inria.fr/~piumarta/squeak/unix/zip/j3-2.6.0/doc/j3/

[RO3)]

[S01]

[V97]

[WO1]

Armin Rigo. The Ultimate Psyco Guide.
http://psyco.sourceforge.net /psycoguide.ps.gz

Gregory T. Sullivan. Dynamic Partial Evaluation. In Lecture Notes In
Computer Science, Proceedings of the Second Symposium on Programs
as Data Objects, pp. 238-256, Springer-Verlag, London, UK, 2001.

Engen N. Volanschi, Charles Consel, and Crispin Cowan. Declarative
specialization of object-oriented programs. In Proceedings of the ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA-97), volume 32, 10 of ACM SIG-
PLAN Notices, pages 286-300, New York, October 5-9 1997. ACM Press.

John Whaley. Partial Method Compilation using Dynamic Profile In-
formation. In Proceedings of the OOPSLA 01 Conference on Object
Oriented Programming Systems, Languages, and Applications, October
2001, pages 166-179, Tampa Bay, FL, USA. ACM Press.

23

http://psyco.sourceforge.net/psycoguide.ps.gz

	Introduction
	Plan
	Background
	Compile-time and run-time values
	Contribution of the present paper
	Related work

	Just-in-time specialization
	The Unlift operator
	The top-down approach
	Example
	Issues with just-in-time specialization

	Representation-based specialization
	Representations
	Specializers
	Example
	Application
	Integration with an interpreter

	Putting the pieces together
	Changes of representation
	Conclusion
	Acknowledgements

	Psyco
	Overview
	Representations
	Implementation notes
	Performance results

